

P³roLucas

Optimization of plant performance and products for <u>lupin</u> cascade use

Boost Fund 2.0

GFL Jahrestagung 2025 - Dr. Marco Löhrer

P³roLucas aims at promoting the protein crop plant lupin by:

CG1 - RWTH Aachen University Molecular Plant Physiology

Prof. Dr. Ulrich Schaffrath Dr. Marco Löhrer

improving production by smart use of biostimulants: protection against biotic- and abiotic stresses and yield increase

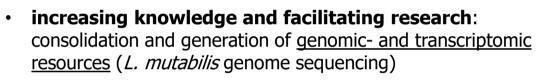
CG2 - IBG-4, FZ Jülich

Prof. Dr. Björn Usadel Dr. Anika Wiese-Klinkenberg Dr. Sebastian Beier Mansi Singh

CG3 - IBOC - Bioorganic Chemistry, HHU Düsseldorf

and IBG-1, FZ Jülich

Prof. Dr. Jörg Pietruszka Dr. Thomas Classen Philipp Sowa



CG4 - Chair of Agricultural and Food Market Research, ILR, University of Bonn

Prof. Dr. Monika Hartmann Dr. Johannes Simons Jeanette Klink-Lehmann Bodo Rehm

HAACHEN NVERSITY

implementing a cascade use approach: use of hitherto unused <u>alkaloids</u> (up to now regarded as unwanted) in chemical industry

L. angustifolius

L. mutabilis

investigating reception of concept: <u>assessment of</u> producer's acceptance of biostimulants in legume cultivation

Biologicals/Biostimulants

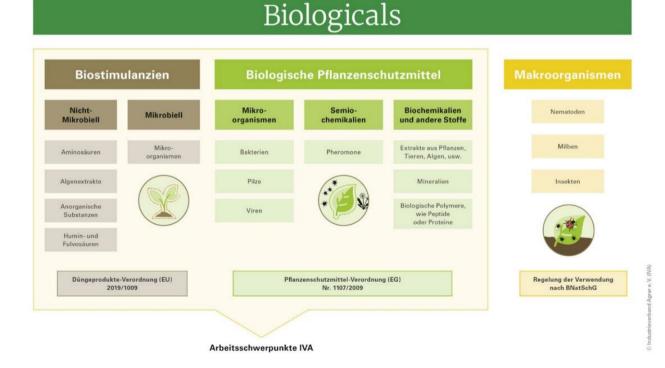
CG1 - RWTH Aachen University Molecular Plant Physiology

Prof. Dr. Ulrich Schaffrath

Dr. Marco Löhrer

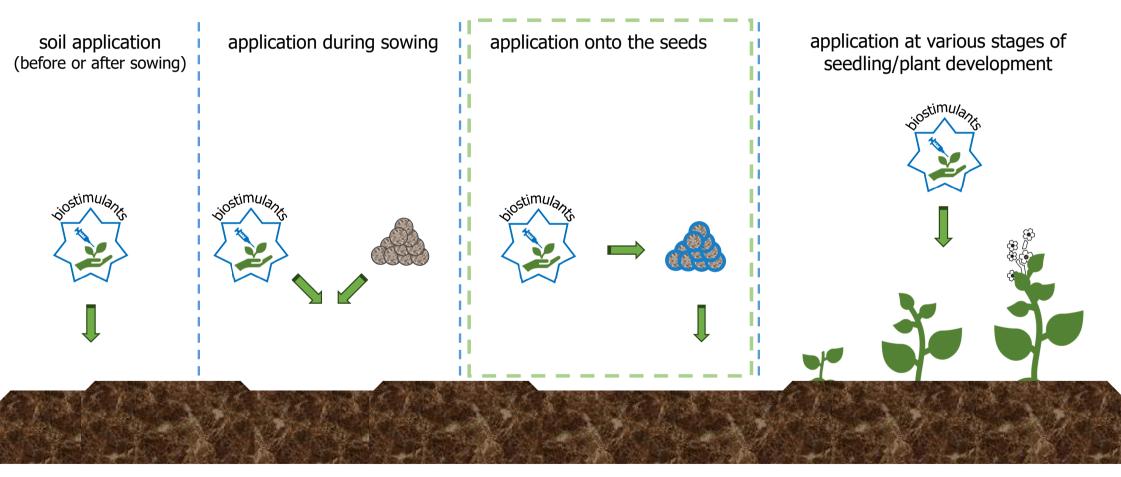
- in P³roLucas we test commercially available as well as novel biostimulants as a (partial) alternative/addition to breeding approaches and traditional "PSM" to protect lupin from stresses and to improve plant performance
- goal: provisioning of biostimulants that induce positive effects in selected narrow-leafed lupin elite cultivars under field conditions

"biostimulants"


(",biologicals", "plant strengtheners"):

natural substances (from e.g. soil/environment or plant-derived/microorganism-derived) or microorganisms that <u>improve growth and nutrient</u> <u>uptake</u> of plants <u>and protect against abiotic stresses</u>

(in Germany regulated by "Düngemittelverordnung")


If biostimulants also protect against biotic stress, they are treated as plant protection products!

(in Germany regulated by "Pflanzenschutzmittelrecht")

Biological/Biostimulant application

CG1 - RWTH Aachen University Molecular Plant Physiology

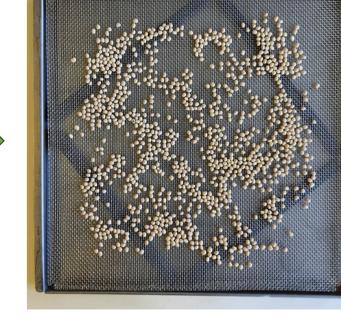
seed treatment

iostimu/onti + Jupin seeds adjuvant

Ŏ

short co-incubation or coating process incl. seed priming*

biostimulant and adjuvant

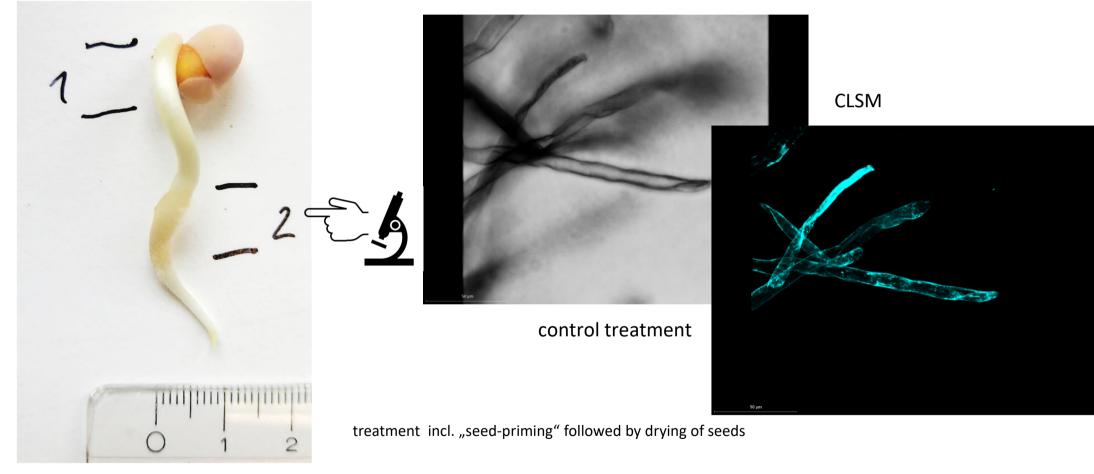


only adjuvant ("seed priming")

untreated control

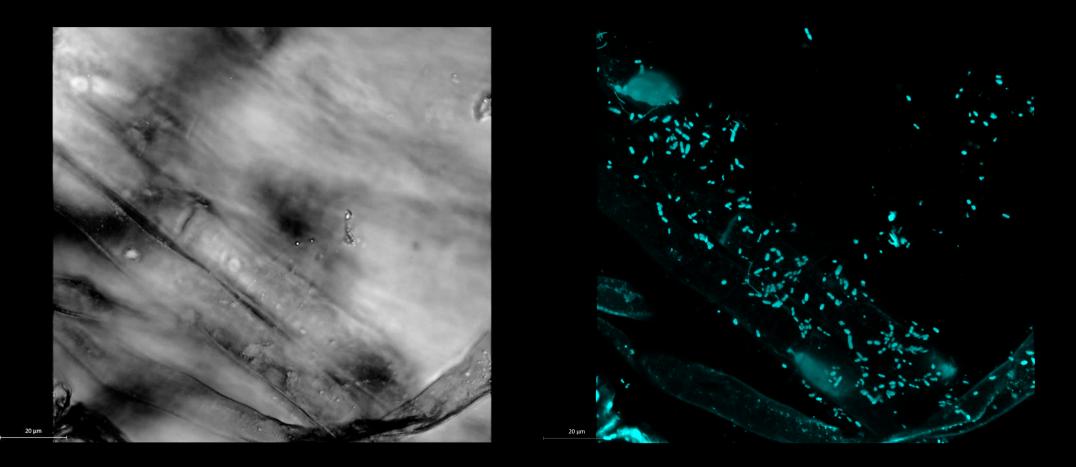
drying

*=hydration treatment; controlled imbibition and induction of the pregerminative metabolism; stopped before dessication tolerance is lost and before radicle emerges

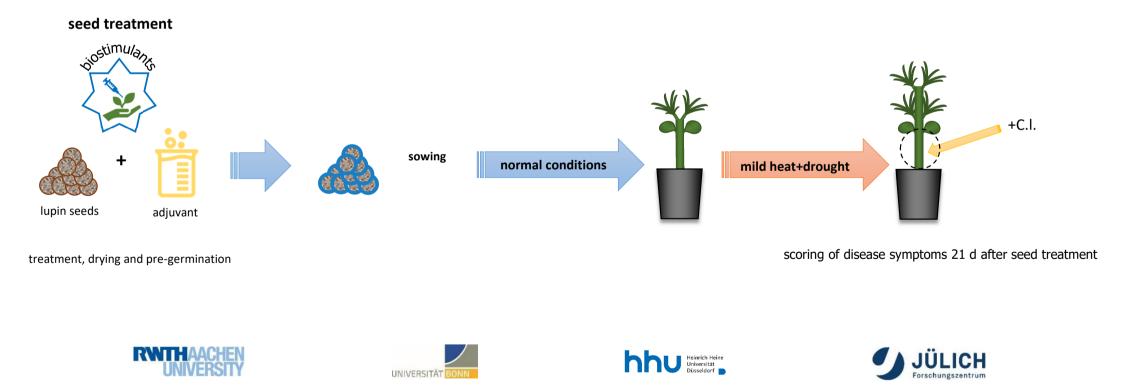


CG1 - RWTH Aachen University Molecular Plant Physiology

CG1 - RWTH Aachen University Molecular Plant Physiology Where do we find the bacteria after treatment?



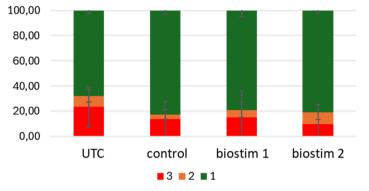
living bacteria are found at the root and the root hairs after seed-treatment


L. angustifolius seeds treated with bacterial biostimulant

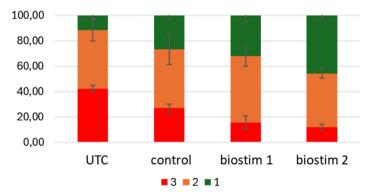
CG1 - RWTH Aachen University **Molecular Plant Physiology** Biological/Biostimulant Treatment and Seed-priming improve Lupin Performance **BioSC** viostimu/an lupin anthracnose (Colletrotrichum lupin LILLI 20 d after seed treatment (+ seed-priming) resistance induction plant growth-promoting effect 1,2 Exp1 1.0 Exp2 a,b b b b а Exp3 1 0.9 . . •ו •ו relative plant height 9 2. 20 8 20 realtive lesion lenght 0,8 • • × ٥ **X**. o 0 <u>.</u>.... 88 X 0,6 0 ٥ 0 Х 0,4 증 <u>,o</u> 0 8 0 0 0.5 0,2 0.4 0 product 3 product 1 product 2 product 3 bacterium control A product 1 product 2 product 4 UTC seed priming two independent[#] biological exp., one-way ANOVA, Tukey Post-Hoc Test, a = 0.05 RANNEL Heinrich Heine Universität Düsseldorf 📄 CH UNIVERSITÄT BO Forschungszentrum

stress experiments

To biostimulants/biologicals only work under certain conditions?



stress conditions enhance effect

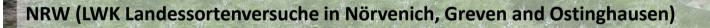


UNIVERSITÄT

scoring of disease symptoms (normal cond., 22°C)

scoring of disease symptoms (stress cond., 28°C)

RNAseq experiment together with CG2


10

BioSC

MV (Saatzucht Steinach)

BioSC

🕿 no pathogen pressure 😕

- 📽 seed treatment did not reduce emergence 🕑
- The bacterial biostim. had no negative impact on alkaloid levels in the seeds

P³roLucas aims at promoting the protein crop plant lupin by:

CG1 - RWTH Aachen University **Molecular Plant Physiology**

Prof. Dr. Ulrich Schaffrath Dr. Marco Löhrer

improving production by smart use of biostimulants: protection against biotic- and abiotic stresses and yield increase

CG2 - IBG-4, FZ Jülich

Prof. Dr. Biörn Usadel Dr. Anika Wiese-Klinkenberg Mansi Singh

CG3 - IBOC - Bioorganic Chemistry, HHU Düsseldorf

and IBG-1, FZ Jülich

Prof. Dr. Jörg Pietruszka Dr. Thomas Classen Philipp Sowa

CG4 - Chair of Agricultural and Food Market Research,

ILR, University of Bonn

Prof. Dr. Monika Hartmann Dr. Johannes Simons Jeanette Klink-Lehmann Bodo Rehm

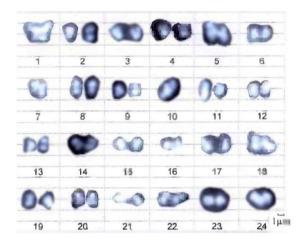
- increasing knowledge and facilitating research: consolidation and generation of genomic- and transcriptomic resources (L. mutabilis genome sequencing)
- **implementing a cascade use approach**: use of hitherto unused alkaloids (up to now regarded as unwanted) in chemical industry

L. angustifolius

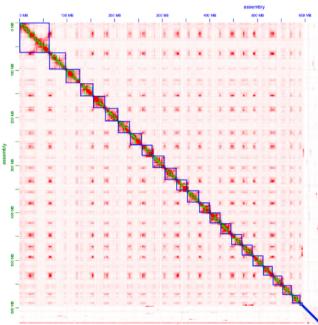
L. mutabilis

investigating reception of concept: assessment of producer's acceptance of biostimulants legume cultivation

CG2 - IBG-4, FZ Jülich



De novo genome assembly of Lupinus mutabilis


Cytogenetic Studies of Andean Lupin

Ewa J. Sawicka-Sienkiewicz and Jolanta Augiewicz

University of Agriculture, Department of Plant Breeding and Seed Production, 34 Cybulskiego Str., 50-205 Wroclaw, Poland

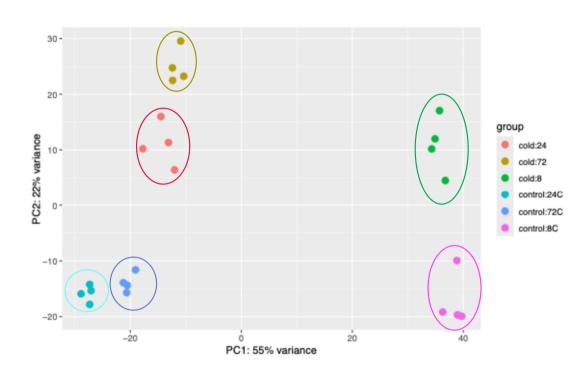
- *Lupinus mutabilis* has a diploid genome (2n=48)

Genome Statistics

	ONT	ONT and Hi-C
Sequencing coverage	115 x	160 x
Contigs	226	169
Genome size	636 Mb	636 Mb
N50 length	7. 95 Mb	24 .06 Mb
N90 length	2. 03 Mb	19 .09 Mb

Annotated protein coding sequences	Mercator Annotated sequences (A)	Mercator Occupied Bins (O)	Classified sequences (C)	Bins available (B)
38,415	34,635 (90.16 %)	5992 (96.29 %)	21188 (55.16 %)	6223

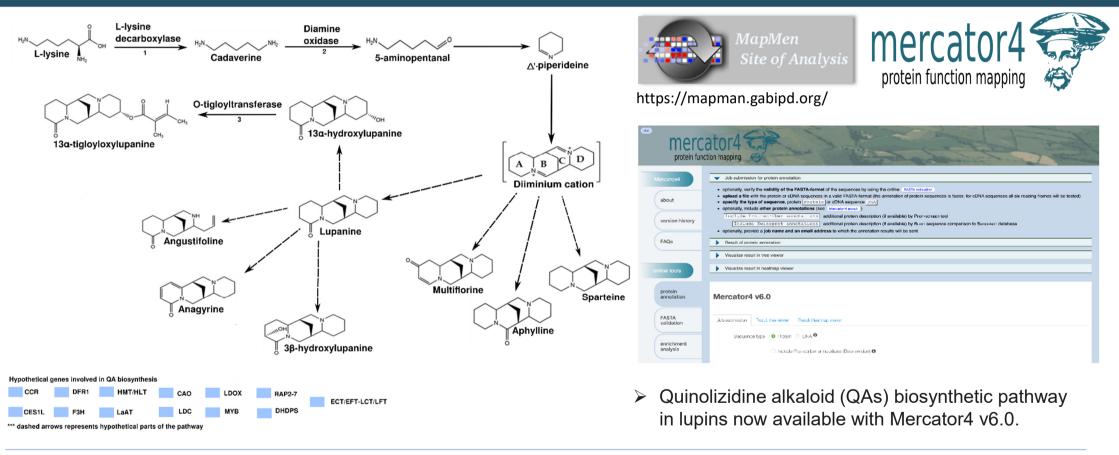
Helixer was used for genome annotation and further proteins were classified with Mercator



Climate adaptation of *Lupinus mutabilis*

cold stress experiments	8 24 h 24 h	 4 days 	4 days
3 weeks*	Col	Coldstress (15°C/12° C)	

- 4 replicates each time point.



Integration of QA biosynthesis pathway into Mercator

P³roLucas aims at promoting the protein crop plant lupin by:

CG1 - RWTH Aachen University Molecular Plant Physiology

Prof. Dr. Ulrich Schaffrath Dr. Marco Löhrer

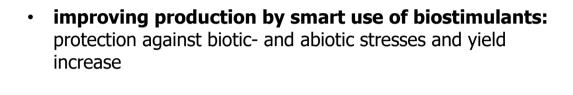
CG2 - IBG-4, FZ Jülich

Prof. Dr. Björn Usadel Dr. Anika Wiese-Klinkenberg Mansi Singh

CG3 - IBOC - Bioorganic Chemistry, HHU Düsseldorf

and IBG-1, FZ Jülich

Prof. Dr. Jörg Pietruszka Dr. Thomas Classen Philipp Sowa



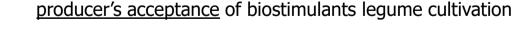
CG4 - Chair of Agricultural and Food Market Research,

ILR, University of Bonn

Prof. Dr. Monika Hartmann Dr. Johannes Simons Jeanette Klink-Lehmann Bodo Rehm

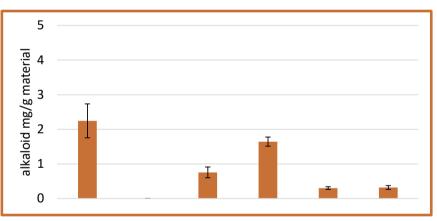
- increasing knowledge and facilitating research: consolidation and generation of <u>genomic- and transcriptomic</u> <u>resources</u> (*L. mutabilis* genome sequencing)
- implementing a cascade use approach: use of hitherto unused <u>alkaloids</u> (up to now regarded as unwanted) in chemical industry

investigating reception of concept: assessment of



L. angustifolius

L. mutabilis


Quinolizidine alkaloids (QA)

UNIVERSITÄT

- QA alkaloids are derived from lysine and present everywhere in the plant (synthesized in green tissues)
- seeds have highest alkaloid content

- alkaloid abundance and composition tissue specific
- changes in abundance and composition can also be caused by stress (link to WP1) I reliable extr.
 process

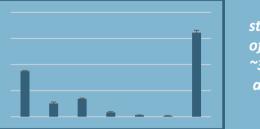
CG3 - IBOC - Bioorganic Chemistry, HHU Düsseldorf and IBG-1, FZ Jülich

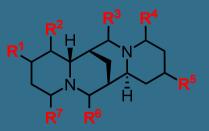
Expertise in WP3

CG3 - IBOC - Bioorganic Chemistry, HHU Düsseldorf and IBG-1, FZ Jülich

extraction, isolation and identification of QA

GCMS NMR HPLC LCMS


establishing a natural compound side stream

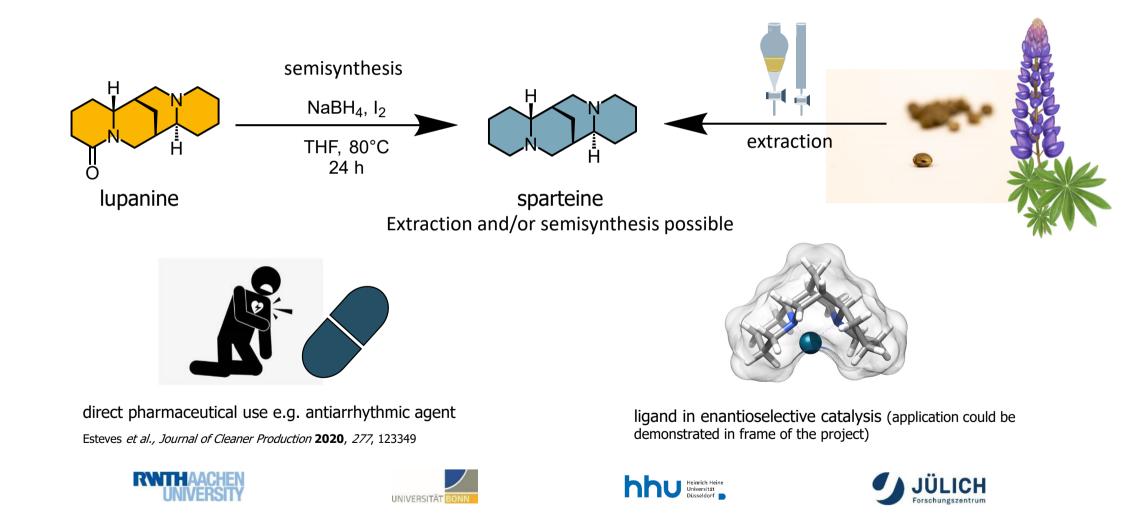

identifiying value and use of alkaloids

high-through-put detection of alkaloid profiles

stable detection of 8 major and ~30 minor alkaloids

valorization and modification of QA

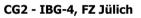
Spotlight on a valuable compound


- expensive and almost impossible to synthesize de-novo

Spotlight on some valuable compounds

20

BioSC



P³roLucas aims at promoting the protein crop plant lupin by:

CG1 - RWTH Aachen University Molecular Plant Physiology

Prof. Dr. Ulrich Schaffrath Dr. Marco Löhrer

Prof. Dr. Björn Usadel Dr. Anika Wiese-Klinkenberg Mansi Singh

CG3 - IBOC - Bioorganic Chemistry, HHU Düsseldorf

and IBG-1, FZ Jülich

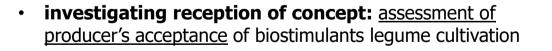
Prof. Dr. Jörg Pietruszka Dr. Thomas Classen Philipp Sowa

CG4 - Chair of Agricultural and Food Market Research,

ILR, University of Bonn

Prof. Dr. Monika Hartmann Dr. Johannes Simons Jeanette Klink-Lehmann Bodo Rehm

- improving production by smart use of biostimulants: protection against biotic- and abiotic stresses and yield increase
 - increasing knowledge and facilitating research:
 consolidation and generation of <u>genomic- and transcriptomic</u> resources (*L. mutabilis* genome sequencing)
 - implementing a cascade use approach: use of hitherto unused <u>alkaloids</u> (up to now regarded as unwanted) in chemical industry



L. angustifolius

L. mutabilis

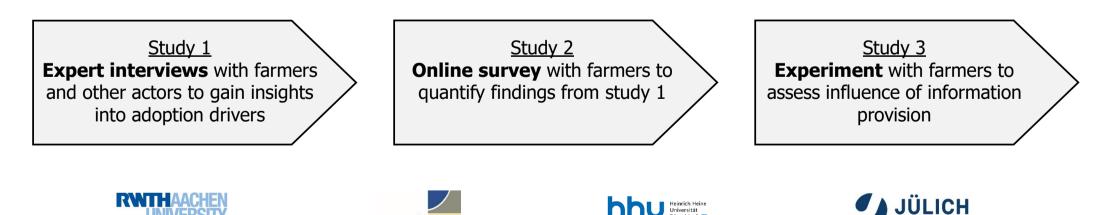
P³roLucas – CG4 WP4: Farmers' acceptance of combined innovation (narrow-leafed lupin varieties and biostimulants)

Chair of Agricultural and Food Market Research, Institute for Food- and Resource Economics, University of Bonn

Prof. Dr. Monika Hartmann

Jeanette Klink-Lehmann

UNIVERSITÄT



Bodo Rehm Bodo Rehm (bodo.rehm@ilr.uni-bonn.de)

Dr. Johannes Simons

Main objective: Evaluate farmers' acceptance and use of a combined innovation consisting of **narrow**leafed lupin varities and dedicated biostimulants

Acknowledgements

RiBa-Lab RWTH Aachen	

Thank you for your attention!

loehrer@bio3.rwth-aachen.de

• Prof. U. Schaffrath and Dr. M. Löhrer (project coordination)

Molecular Plant Physiology (Biology III), RWTH Aachen University

- Prof. Björn Usadel, Dr. Anika Wiese-Klinkenberg and Mansi Singh IBG-4, FZ Jülich
- Prof. J. Pietruszka, Dr. T. Classen and Philipp Sowa IBG-1, FZ Jülich and IBOC - Bioorganic Chemistry, HHU Düsseldorf
- Prof. M. Hartmann, J. Klink-Lehmann and Bodo Rehm

Chair of Agricultural and Food Market Research, Institute for Food- and Resource Economics, University of Bonn

• Saatgut Steinach GmbH & Co KG

