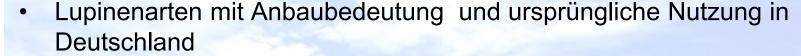


Alkaloidgehalt in Blauen, Gelben und Weißen Lupinen


Gisela Jansen, Hans-Ulrich Jürgens, Helene Beyer, Sylvia Seddig

Gliederung

- -Vererbung, Bestimmung
- -Hauptalkaloide in verschieden Lupinenarten (GC-Chromatogramme)
- -Voraussetzungen für eine Körnernutzung
- Variabilität des Alkaloidgehaltes:
 - -Verschiedene Lupinenarten (bitter und süß)
 - -Alkaloidgehalt in ausgewählten Prüfgliedern von Blauen Lupinen (50 Prüfglieder, 3 Jahre, 4 Standorte)
- Anforderungen an Lupinen zur Nutzung in der Lebensmittelindustrie
- Zusammenfassung, Danksagung

Lupinenarten mit Anbaubedeutung in Deutschland

Blaue Lupinen

Gelbe Lupinen

Weiße Lupinen

in aktueller Sortenliste (2013) 8 Sorten

keine Sorte

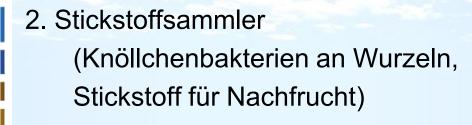
(Nutzung als Energiepflanze)

Projekt ZL: L. Mutabilis

andere Bezeichnung:

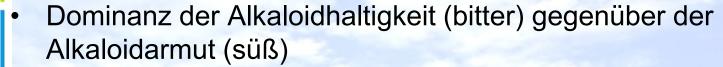
Anden-Lupine oder tarwi

Ursprüngliche Nutzung von Lupinen in Deutschland



Zwischenfrucht mit sehr guten Eigenschaften

 Bodenverbesserung (lange Pfahlwurzel, bis 2-3 m und verzweigtes Wurzelsystem, kurz nach dem Auflaufen schon 40 cm im Schaukasten)


3. Phosphatmobilisierer im Boden (kommt auch der Nachfrucht zugute)

Vererbung des Alkaloidgehaltes

 Rezessive Vererbung der Alkaloidarmut d. h.:

Kreuzung zwischen alkaloidhaltigen und alkaloidarmen Lupinen ist in der F1-Generation immer alkaloidhaltig In der F2-Generation wieder Aufspaltung und alkaloidarm ist möglich

Quelle: Hackbarth J. und v. Sengbusch R.; 1934, Der Züchter, 249-255 Miedaner T., 2010, Allgemeine Pflanzenzüchtung, 28-29

Bestimmungsmethoden für Alkaloide

Chromatografische Methoden

GC/MS (zur Identifizierung einzelner Alkaloide)

HPLC (geringere Empfindlichkeit durch wenig empfindliche Chromophoren, geringere Trennkapazität der Säulen)

DC (geringere Empfindlichkeit als GC und HPLC)

Immunologische Verfahren

Voraussetzung: hochspezifische Antikörper

Radioimmunoassay (RIA), mit 13-Hydroxylupanin als Traceralkaloid Enzym-Immunoassay (EIA, ELISA), keine Erfassung von Spartein oder Lupinin (Wink, 1992)

Scintillation proximity assay (SPA), weniger empfindlich als RIA

Schnelltests

Gravimetrische Titration, Anfärben mit J₂/ KJ, Indikatorpapier (Papier mit Dragendorff`s Reagenz, NIRS (bei niedrigem Alkaloidgehalt große Streuung), UV-Test (alkaloidreiche fluoresszierende Samen)

Quelle: Wink, 1992, Methods of Plant Biochemistry, 197-239

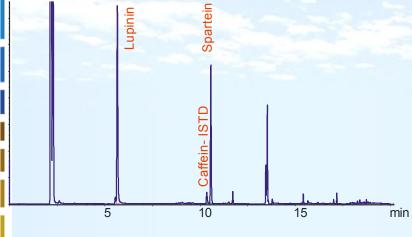
Hauptalkaloide in verschiedenen Lupinenarten

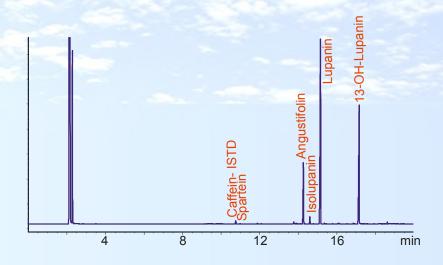
- Blaue Lupinen (*L. angustifolius*)
 Lupanin, Angustifolin, 13-Hydroxylupanin
- Gelbe Lupinen (*L. luteus*)
 Lupinin, Spartein

- Weiße Lupinen (*L. albus*)
 Lupanin, Multiflorin, 13-Hydroxylupanin, Albin
- Andenlupine (*L. mutabilis*)
 Lupanin, 13-Hydroxylupanin, 3-Hydroxylupanin,
 Tetrahydrorhombifolin, Spartein

Quelle: Wink et al., 1983, Journal of Medicinal Plant Research, 253-257; Wink und Witte, 1985, Zeitschrift für Naturforschung, 767-775; Wink, 1991, Proceedings of the 6th International Lupin Conference, 326-334)

Bestätigung durch eigene GC/MS-Bestimmungen Jürgens H.-U. JKI/RS


Chromatogramm von Alkaloiden in Gelben und Blauen Lupinen

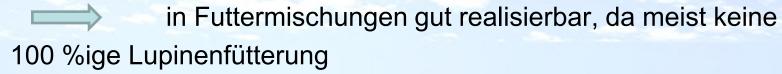


Quantifizierung mittels Gaschromatographie Identifizierung mittels Massenspektrometrie

Schwako

Azuro

Voraussetzungen für Körnernutzung der Lupinen

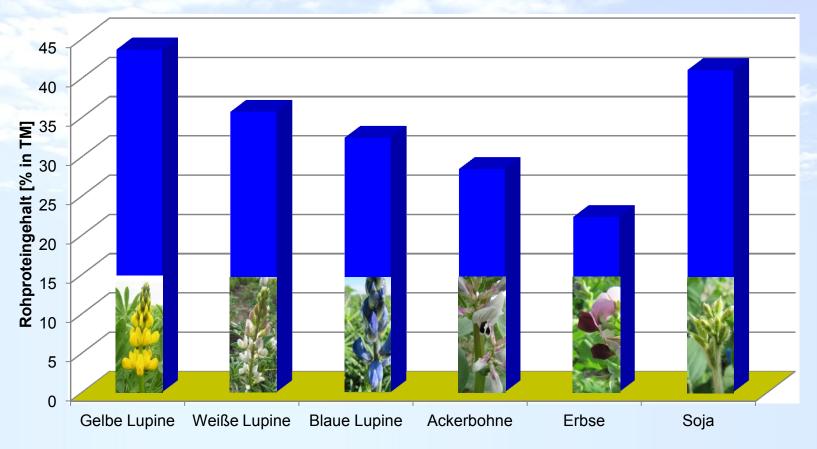


Niedriger Bitterstoffgehalt (Alkaloidgehalt)
 Entdeckung von ersten "süßen" Körnern durch R. v. Sengbusch (Anfang des 20. Jahrhunderts)

<0,02 % menschliche Ernährung

als Proteinisolat gut realisierbar, da Alkaloide wasserlöslich

Voraussetzungen für Körnernutzung der Lupinen



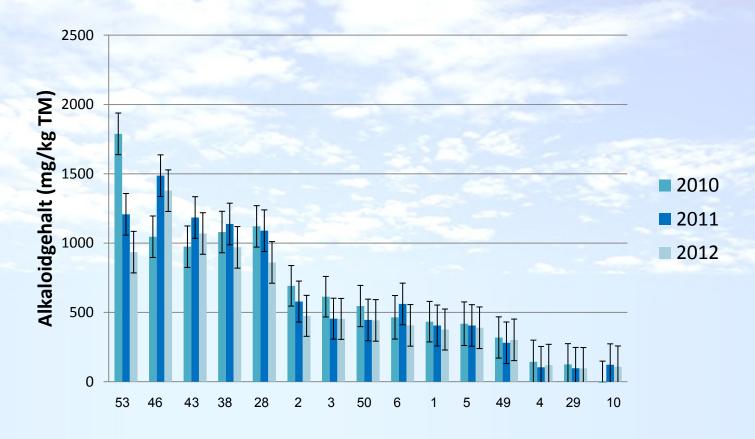
Variation im Alkaloidgehalt in verschiedenen Lupinen–Arten

∮JKi

Blaue Lu	Blaue Lupine		Gelbe Lupine		Lupine	Quelle
Bitter	Süß	Bitter	Süß	Bitter	Süß	
0,250- 2,050	0,001- 0,100	0,350- 1,550	0,000- 0,090	0,350- 3,250	0,016- 0,026	Hackbarth und Troll, 1959 in http:// uni-giessen. de/geb/volltexte/2003/320/original/g _lupin.htm
1,375 (Azuro)	0,006- 0,068	0,836 (Schwako)	0,005- 0,044	1,095 (Stamm)	0,013- 0,488	Eigene Daten Groß Lüsewitz, Ernte 2013, Schwako 2012

Alkaloidgehalt (%) verschiedener Süßlupinenarten im Ökoanbau in Groß Lüsewitz

Jahr		Blaue Lupinen [%]	Gelbe Lupinen [%]	Weiße Lupinen [%]	
		n=13 (9+4) (9 Sorten + 4 Zuchtstämme)	n=16 (12+4) (12 Sorten + 4 Zuchtstämme)	n=15 (1+14) (1 Sorte + 14 Zuchtstämme)	
		Mittelwert	Mittelwert	Mittelwert	
	2012	0,0383	0,0167	0,1129	
	2013	0,0367	0,0215	0,1215	
		min	min	min	
	2012	0,0069 (Sorte)	0,0037 (Stamm)	0,0138 (Stamm)	
	2013	0,0055 (Sorte)	0,0049 (Sorte)	0,0133 (Stamm)	


Alkaloidgehalt ausgewählter Blauer Lupinen-Prüfglieder über vier Standorte in 3 Jahren

Heritabilität h² = 0,96 (50 Prüfglieder, 4 Standorte, 3 Jahre) 4 Standorte:
Groß Lüsewitz
Bornhof
Dratow
Steinach

Anforderungen an Lupinen zur Nutzung in der Lebensmittelindustrie

Projekt PlantsProFood
Gewinnung von funktionellen Food Ingredients aus Lupinensaaten
LupiRoh

Neue Sorten der Blauen Süßlupine als Rohstoff für die Lebensmittelindustrie

Hoher Ertrag (25 dt/ha stabil)

- Hoher Proteingehalt (> 35 % stabil)

Geringer Bitterstoffgehalt (< 0,02 % stabil)

Zusammenfassung

Zur Zeit haben nur Blaue Süßlupinen Anbaubedeutung in Deutschland.

Ursprünglich wurden Lupinen zur Bodenverbesserung genutzt.

Voraussetzung für die Körnernutzung im Futter- und Lebensmittelbereich:

- -Entdeckung von Süßlupinen
- -höchster Proteingehalt innerhalb einheimischer Leguminosen (ohne Soja)

Eine exakte Bestimmung der Alkaloide ist aktuell nur mit aufwendiger GC/MS-Methode möglich.

- Unterschiedliche Lupinenarten verfügen über ein unterschiedliches Alkaloidspektrum.
- In bisher untersuchten Weißen Süßlupinen ist noch teilweise bitteres Material vorhanden.

Zusammenfassung

• Im Ökoanbau in Groß Lüsewitz hatten bei einem Artenvergleich die Gelben Lupinen die geringsten Alkaloidgehalte.

 Die Vererbung des Alkaloidgehaltes ist dominant-rezessiv mit hohen Heritabilitäten (50 Blaue Süßlupinen, 3 Jahre, 4 Standorte).

 Neue Sorten für eine Nutzung in der Lebensmittelindustrie erfordern: hohe und stabile Erträge hohe und stabile Proteingehalte geringe und stabile Bitterstoffgehalte

Danksagung

Vielen Dank für die **Bereitstellung von Fördermitteln** durch das Bundesprogramm Ökologischer Landbau und andere Formen nachhaltiger Landwirtschaft

sowie

durch das Bundesministerium für Bildung und Forschung

Vielen Dank für die technische Assistenz

Steffen Esser und Stefan Koch

Christoph Peters

Margrit Jugert

Carmen Leesch

Vielen Dank für Ihre Aufmerksamkeit!