

PlantsProFood

Neue ertragreiche Wuchstypen der Blauen Süßlupine für eine nachhaltige Rohstoffversorgung

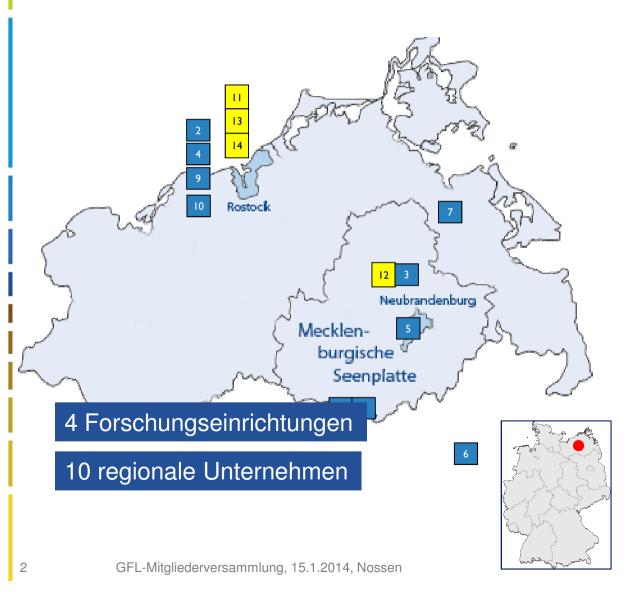
<u>Kristin Fischer</u>¹, Eicke Rudloff¹, Anne-Kathrin Schmalenberg², Björn Rotter³, Peter Winter³, Peter Wehling¹, Brigitte Ruge-Wehling¹

¹JKI, Institut für Züchtungsforschung an landwirtschaftlichen Kulturen, Groß Lüsewitz

²Saatzucht Steinach GmbH, Bocksee

³GenXPro GmbH, Frankfurt/Main

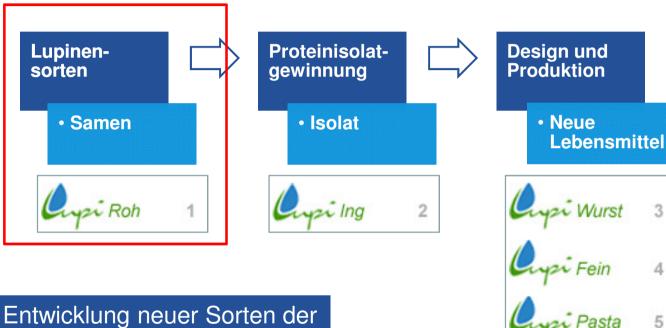
GEFÖRDERT VOM



PlantsProFood – Kooperationspartner

- Saatzucht Steinach GmbH
- 2 STZ Soil Biotechnology
- 3 Prolupin GmbH
- ROSOMA Rostocker Sondermaschinen u. Anlagenbau GmbH
- Zentrum für
 Lebensmitteltechnologie GmbH
- Institut für Getreideverarbeitung GmbH
- 7 Greifen-Fleisch GmbH
- 8 Möwe-Teigwaren GmbH
- 9 Stadtbäckerei Der Hansebäcker GmbH
- 10 Sywan GmbH
- 11 Julius Kühn-Institut
- Fraunhofer Institut Verfahrenstechnik und Verpackung
- Universität Rostock
 Institut für Bodenkunde
- Universitätsfrauenklinik am Klinikum Süd

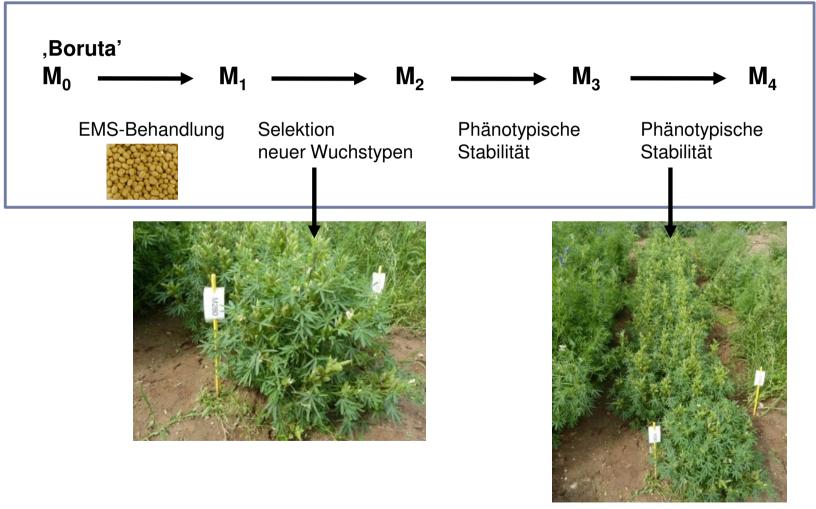
Lupine in der humanen Ernährung


- Ernährungsphysiologisch wertvolles Protein
- Niedriger glykämischer Index
- Erniedrigt LDL-Cholesterol-Level
- Niedrige Puringehalte
- Glutenfrei
- Laktosefrei
- Verbesserte sensorische Eigenschaften

PlantsProFood – Wertschöpfungskette

Landwirt-schaftliche Unternehmen

Lipi Fein 4


Lipi Pasta 5

Lipi Back 6

Blauen Süßlupine

Entwicklung neuer Wuchstypen

Homogene Mutationslinien I

Wüchsige und verzweigte Typen

M116 M190

M1725

Homogene Mutationslinien II

Zwergige Typen

M991b

M1001

M348

Homogene Mutationslinien III

Hochangesetzte Verzweigung

Boruta

M1424b

M1424b

Homogene Mutationslinien IV

Hochangesetzte Verzweigung

M280

Ertragskomponententests – Standorte

	Groß Lüsewitz	Gülzow
Jährl. Niederschlag	692 mm	569 mm
Durchschnittstemperatur	8,3 °C	8,6 °C
Bodenform	Sandlehm- Braunstaugley	Sand
pH-Wert des Bodens	5,8	5,7

Ertragskomponententests – Parameter

Wiederholungen

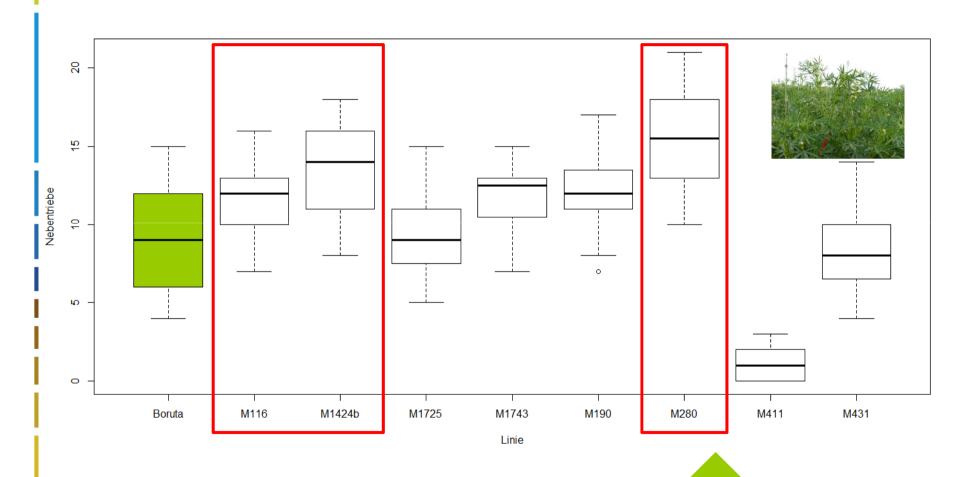
• 2 pro Jahr (2012, 2013, 2014)

Aussaatstärke

• 50 Korn / m², 90 Korn / m²

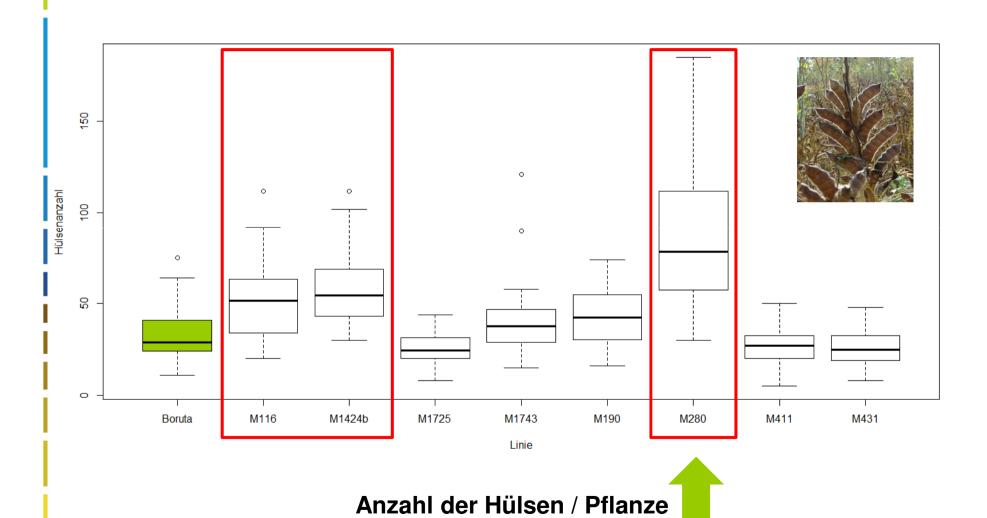
Material

- Boruta (WT)
- M116, M280, M411, M431, M1424b, M190, M1725, M1743
- Auswertung von 20 Einzelpflanzen je Wiederholung

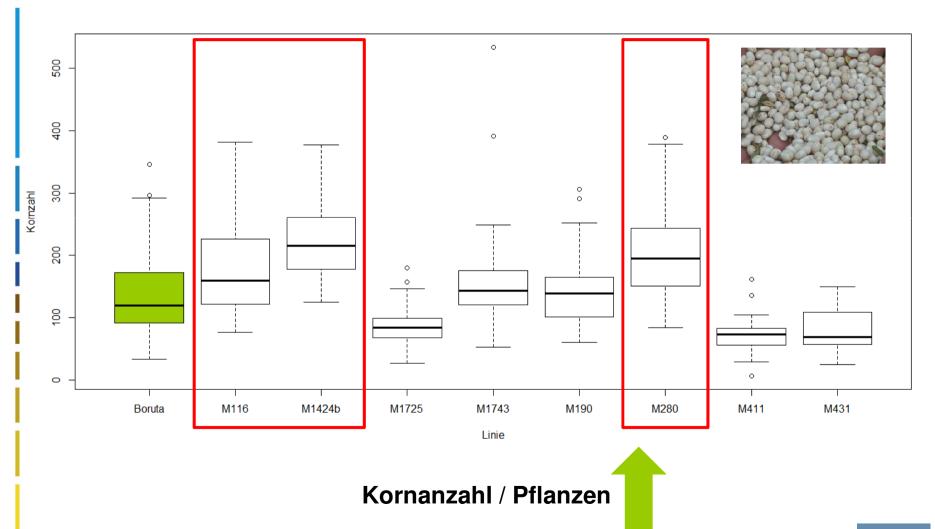

Statistische Analyse

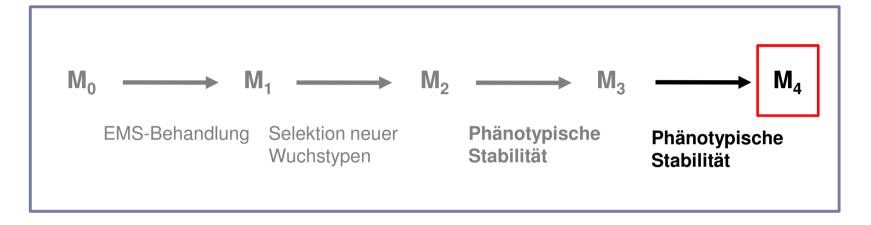
Linie	Pflanzenläng in cm	ge Anzahl der Hülsen	Anzahl der Körner	Anzahl der Nebentriebe
Boruta (WT)	57,8	33,2	138,9	9,2
M116	49,3	51,4	176,2	11,7
M1424b	53,0	58,0	223,8	13,4
M1725	63,4	25,7	86,9	9,2
M1743	53,8	40,6	159,4	11,9
M190	47,6	43,9	143,8	11,9
M280	40,6	85,9	205,8	16,0
M411	54,7	27,4	71,9	1,0
M431	83,5	25,7	79,0	8,5

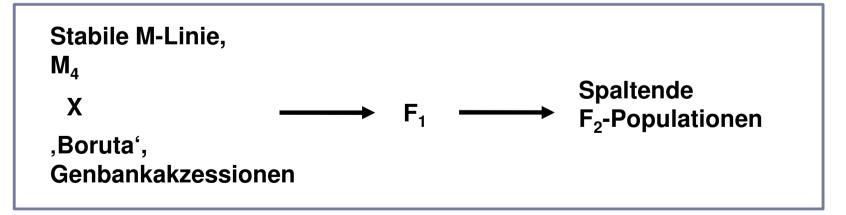
Statistische Analyse - Anzahl der Nebentriebe



Anzahl der Nebentriebe / Pflanze


Statistische Analyse – Anzahl der Hülsen


Statistische Analyse – Kornanzahl



Entwicklung von F2-Populationen

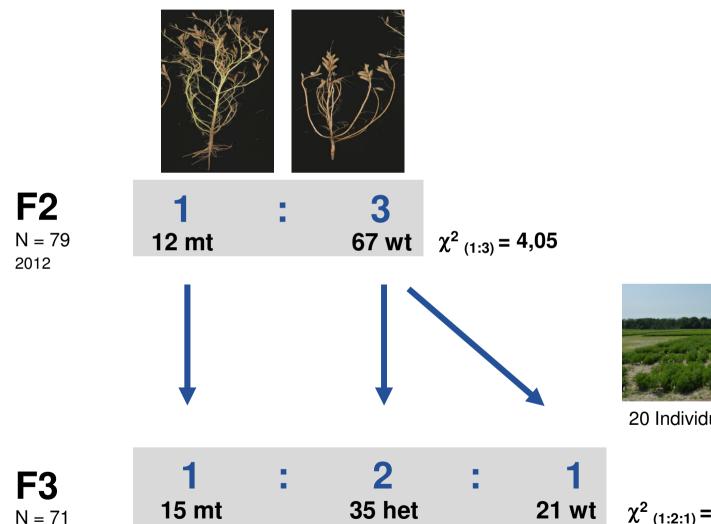
Genetische Analyse I

F2-Population	Phänotyp	N	Mutation	Wildtyp	χ² (1:3)
M190 x L115	Halbzwerg mit hellgrünen Hülsen	96	27	69	0,50
M116 x L115	Wüchsig	105	27	78	0,03
M411 x L115	Verbänderung	127	34	93	0,21
M280 x L115	Hoch angesetzte Verzweigung	101	29	72	0,74
M21 x L115	Hellgrünes Laub	109	19	90	3,33

Mutationslinie x Genbankakzession

chi² -Test α = 0.05; df = 1; kritischer Wert = 3.84

Genetische Analyse II


F2-Population	Phänotyp	N	Mutation	Wildtyp	χ² (1:3)
M431 x Boruta	Reduzierter Hülsenansatz	75	15	60	1,00
M348 x Boruta	Zwerg, dunkelgrünes Laub	66	17	49	0,02
M1424b x Boruta	Wüchsig,determiniert verzweigt	79	12	67	4,05
Boruta x M116	Wüchsig	64	27	37	10,08
M280 x Boruta	Hoch angesetzte Verzweigung	87	25	62	0,65

Mutationslinie x ,Boruta'

chi² -Test α = 0.05; df = 1; kritischer Wert= 3.84

Nachkommenschaftstests - M1424b x Boruta

20 Individuen / F2-Pflanze

 $\chi^2_{(1:2:1)} = 1,03$

mt = Mutationstyp wt = Wildtyp het = Heterozygote

2013

Markerentwicklung via RNAseq

EMS-Behandlung

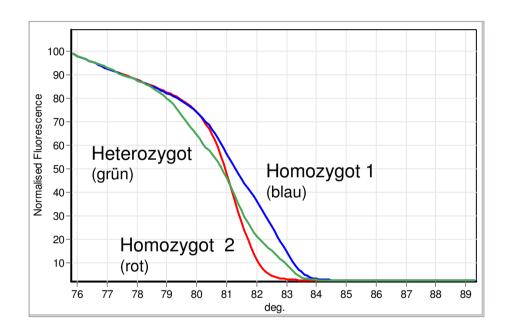
.Boruta⁴

...ACTAGAGGTTCGGAAATGAAA<mark>T</mark>GTGAGGGAGGCAACGAGACTTCTCTCTCACC...

z.B.

M280

Punktmutation führt zu Wuchstyp "hochangesetzte Verzweigung"


Identifikation von 42 differentiell exprimierten SNPs

Entwicklung der Markerassays

Sequenz A ← 100 bp 100 bp →

Primer1

Primer2

HRM – <u>high resolution melt</u>

Genotypisierung und Kopplungsanalyse zur Identifikation von eng gekoppelten Markern für den Wuchstyp "hochangesetzte Verzweigung"

Zusammenfassung

- ✓ Identifikation neuer Wuchstypen mit Ertragspotential
 - → Stehen für Züchtungszwecke zur Verfügung
- √ Feldtests
 - → Höhere Erträge
- ✓ Genetische Analyse der Wuchstypen
 - → Spaltungsverhältnis von 1:3
- ✓ Sequenzierung des Transkriptoms
 - → Identifikation differentiell exprimierter SNPs

Ausblick

- ✓ Entwicklung von Selektionsmarkern
- ✓ Anwendung der Markerassays in Züchtungsprogrammen
- ✓ Feldtests zur Verifizierung der Wuchstypen und des Ertragspotentials in 2014
- ✓ Kombination von Anthraknoseresistenz und Wuchstyp

Danke an...

Steffen Roux Michael Sprengel Nicolas Krezdorn Rico Fürstenberg Madlen Christoffer Rita Heese Stefan Koch Marcel Ackermann

Vielen Dank für die Aufmerksamkeit!

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

